

USGS WATER AVAILBILITY AND USE STUDIES

Chad Wagner, Associate Director USGS South Atlantic Water Science Center North Carolina - South Carolina - Georgia

USGS National Water Census

To place technical information and tools in the hands of stakeholders, allowing them to answer questions they face about water availability:

- Does the Nation have enough freshwater to meet both human and ecological needs?
- Will this water be present to meet future needs?

SECURE Water Act Public Law 111-11, § 9507 and 9508

Focused Water Availability Assessments

une activities that are shared in \$16

and example of a water-use syst

Water Use

Eco Flows

Water Quality

Global

Change

Past and future effects of climate

Groundwater Resources

Surface Water Trends, Precipitation, etc

State, Local, Regional Stakeholder Involvement

Defined Technical Questions to be Answered

New (in 2016) and Existing Focus Area Studies

Coastal Carolinas Focus Area Study

- Ongoing/projected population increases in this land limited coastal region = higher population density and sharper interface between fresh and saltwater ecosystems.
- ✓ Frequent Droughts/Hurricanes
- Groundwater Capacity-use Area
- Sea-level rise, land-use change and climate change will impact
 - aquifer water levels; and
 - frequency, duration and magnitude of streamflow and salinity intrusion near watersupply intakes.

Objectives and Scope

- Water-use -- develop water-use estimates at HUC-8 watershed scale and refine estimates for golf courses, public supply, thermoelectric and industrial sectors.
- Land-use change and water-demand forecast models
- Surface-water models -- evaluate potential changes in water availability and salinity in response to various water-use and climate-change scenarios
- Ecological (fish and invertebrate) response models to alterations in flow
- Groundwater flow model of surficial and deeper water-supply aquifers to simulate water-use and climate-change scenarios and susceptibility of saltwater encroachment and leakage from pumping

Expected Results/Deliverables of the CC FAS:

- More refined and representative water-use estimates at the HUC-8 levels from pts of diversion or withdrawal
- Future land-use change (urbanization) and water-demand predictions
- Modeling tools and water-availability predictions based on alternative land-use, water-use, and climate-change scenarios:
 - Surface-water models;
 - Ecological response models; and
 - Groundwater flow and saltwater intrusion models;

Groundwater Availability and Susceptibility in Wake County

Conceptual Model of Hydrogeologic System

Water Availability – Mapping Distribution of Well Yields

.

Soil-Water Balance (Recharge) Modeling

Rainfall and Temperature Data +...

Land Use/Cover + lookup table with runoff curve and root-zone depth

Hydrologic Soil Group

Soil Water Capacity

0 - 1

1-8

12 - 22

22 - 32

Surface Flow Direction

Soil-Water Balance (SWB) Model Output

Mean Annual Recharge Map

 Upland/interstream areas, more sandy soils, upgradient of wetlands

Mean Annual Runoff Map

• Areas along Cape Fear River, Intracoastal and Coastline, larger creeks

NC STATE UNIVERSITY

Geospatial Analytics

Land-change simulations

Lad change model: FUTure Urban-Regional Environment Simulation (FUTURES; Meentemeyer et al., 2013).

NC STATE UNIVERSITY

Two urbanization scenarios

Geospatial Analytics

Status-Quo

Population	2.1 M
Per capita land consumption	2.5 people/unit
Spatial patterns of development	historical pattern of growth
Protected areas	N/A

Projected year: 2065

	WaterSmart
Population	2.1 M
Per capita land consumption	3 people/unit
Spatial patterns of development	infill (simple, cohesive patches)
Protected areas	riparian buffers, wetlands

Example simulation of progressive growth to the year 2065 for our two urbanization scenarios.

Geospatial Analytics

Predicted Percent Change in Water Demand: Wake County by 2065

Groundwater Flow Modeling

Primary inputs:

- Model Grid
- Hydrogeologic Framework
- Aquifer Properties
- Recharge
- Observation Data
- Boundaries
- Wells Water Use Data

Primary Outputs:

Groundwater LevelsWater Budgets

Representative GW Flow Model

Data Requirements

- Well records
- Water levels
- Water-quality data
- Geophysical logs
- Streamflow data
- Climate data
 - Daily min/max temperature
 - Precipitation
- Water-use data

Questions/Discussion

NC STATE UNIVERSITY

Geospatial Analytics

Emission trajectory

NC STATE UNIVERSITY

Geospatial Analytics

